Считается общепринятым, что совершенствование промышленного способа получения синтез-газа, обогащенного водородом и монооксидом углерода в трубчатых реакторах с использованием катализаторов определенной конструктивной формы весьма актуально на крупнотоннажных производствах аммиака, метанола, уксусной кислоты и водорода.
При осуществлении указанного процесса реализуются следующие эндо- и экзотермические реакции
СnHm + n H2O → nCO + (n +m/2)H2 (-ΔHо298 <0) (1)
CO + H2O ↔ CO2 + H2 (-ΔHо298 =41 кДж/моль) (2)
CH4 + H2O ↔ CO + 3H2 (-ΔHо298 =-206,4 кДж/моль) (3)
Промышленный паровой риформинг проводят в присутствии никельсодержащего катализатора в виде гранул различных размеров и форм, которыми заполняют жаростойкие трубы реактора. В контактных аппаратах указанного типа (печах риформинга) необходимая для протекания химического процесса теплота передается из зоны сжигания топлива путем ее конвективного и излучательного переноса на внешние поверхности реакционных труб. Благодаря высокой теплопроводности металла труб тепло аккумулируется газовой фазой и гранулами катализатора. Температура последних, как правило, на 100 С ниже (особенно в центральной части слоя катализатора), чем температура внутренней стенки трубы.
Указанный способ производства синтез-газа имеет следующие характерные недостатки:
-
необходимость поддержания более высокой температуры наружных стенок труб по сравнению с температурой слоя катализатора, что приводит к повышенному расходу энергоносителей и сокращению срока эксплуатации реакционных труб;
- выбор оптимальных размеров гранул катализатора зачастую не согласуется с диаметром трубы, вследствие чего могут возникать неоднородности полей температур и скоростей газа по сечению труб [1 – 4].
Авторам [2] удалось преодолеть большинство из них. Предложенный ими усовершенствованный способ получения синтез-газа, обогащенного водородом и монооксидом углерода, основан на каталитическом риформинге углеводородсодержащего сырья, подаваемого в смеси с водяным паром в обогреваемые трубы реактора с загруженным катализатором.
При этом, впервые в мировой практике катализатор представляет собой гранулы сферической формы с отношением их диаметра к высоте загруженного слоя 1,0·10-3–2,0·10-3, в которых имеются цилиндрические каналы размером в 2–10 раз меньше, чем диаметр шаров. Содержание никеля в катализаторе составляет 9–25 % мас. в пересчете на монооксид никеля, а в качестве материала для изготовления шаров используют глинозем определенной марки.
Узким местом в указанном процессе получения синтез-газа является повышенный перепад давления по высоте реакционных труб, что препятствует наращиванию мощности агрегатов аммиака.
С целью оптимизации паровой конверсии углеводородов предложено вести её в реакционных трубах с пониженной толщиной стенок, что может быть достигнуто повышением активности катализатора, снижением газодинамического сопротивления, улучшением эксплуатационного ресурса реакционных труб и снижением расхода топливного газа [5–8].
Внедрению рассмотренных и других известных технических решений препятствует повышенное потребление энергии, удельные затраты которой, являются мерой термодинамического совершенства процесса [8 - 10].
Определённый прогресс достигается путем комбинирования каталитического парциального окисления и автотермического каталитического риформинга, включающего:
а) использование в заданных пропорциях потоков углеводородов, содержащих кислородсодержащие среды и технологический пар;
б) введение указанных потоков в зону каталитического парциального окисления для получения предварительного продукта;
в) подачу этого предварительного продукта и второго потока, содержащего кислород, на стадию парциального окисления путем осуществления реакции в пламени;
г) проведение дальнейшего процесса парциального окисления в реакционной зоне парового риформинга с целью получения синтез-газа;
д) отделение потока синтез-газа для предотвращения парциального окисления, устанавливая, таким образом, двухступенчатый процесс автотермического риформинга.
Однако и в рассматриваемом случае не устранены вышеотмеченные недостатки.
Для их устранения предложено оригинальное техническое решение.
Оно основано на том, что дымовой газ, получаемый от сжигания топлива с окислителем, используют в качестве теплоносителя для снабжения энергией стадии каталитического риформинга углеводородов, направляя его в каскад реакторов: сначала в первый реактор, в котором теплообмен происходит преимущественно за счет радиационной составляющей, а затем – во второй и последующие реакторы, в которых теплообмен происходит преимущественно за счет конвективной составляющей коэффициента теплоотдачи.
Подобный технологический приём подачи дымового газа под давлением позволяет увеличить интенсивность радиационного теплопереноса в первом реакторе и конвективного теплопереноса во втором.
В таблицах 1 и 2 приведены значения радиационных коэффициентов теплоотдачи αр и их суммы с конвективными коэффициентами αк. применительно к схеме, показанной на рисунке.
Температура конвертированного газа, оС |
Температура греющего газа, оС |
αр + αк |
αр |
799.37 |
1086.8 |
51.782 |
31.838 |
798.41 |
1087.9 |
51.765 |
31.818 |
797.94 |
1089.0 |
51.813 |
31.864 |
797.76 |
1090.2 |
51.843 |
31.891 |
797.79 |
1091.3 |
51.880 |
31.926 |
797.96 |
1092.5 |
51.918 |
31.962 |
798.24 |
1093.6 |
51.959 |
32.000 |
798.58 |
1094.8 |
52.001 |
32.039 |
798.99 |
1095.9 |
52.046 |
32.082 |
799.43 |
1097.1 |
52.090 |
32.123 |
799.90 |
1098.2 |
52.135 |
32.166 |
800.38 |
1099.4 |
52.180 |
32.209 |
800.87 |
1100.6 |
52.226 |
32.252 |
801.37 |
1101.8 |
52.272 |
32.296 |
801.88 |
1102.9 |
52.318 |
32.339 |
802.40 |
1104.1 |
52.365 |
32.383 |
802.91 |
1105.3 |
52.411 |
32.428 |
Таблица 1. Коэффициенты теплоотдачи (размерность Вт/(м2*К)) для первого реактора. Давление греющего дымового газа 1 ат
Температура конвертированного газа, оС |
Температура греющего газа, оС |
αр + αк |
αр |
803.60 |
1090.2 |
157.56 |
137.58 |
804.19 |
1093.1 |
158.33 |
138.34 |
804.97 |
1096.1 |
158.89 |
138.90 |
805.94 |
1099.1 |
159.47 |
139.47 |
807.04 |
1102.1 |
160.04 |
140.04 |
808.23 |
1105.1 |
160.62 |
140.61 |
809.50 |
1108.1 |
161.20 |
141.19 |
810.81 |
1111.2 |
161.79 |
141.77 |
812.16 |
1114.3 |
162.38 |
142.36 |
813.55 |
1117.5 |
162.98 |
142.96 |
814.97 |
1120.6 |
163.59 |
143.56 |
816.41 |
1123.8 |
164.20 |
144.17 |
817.87 |
1127.0 |
164.82 |
144.78 |
819.35 |
1130.3 |
165.45 |
145.40 |
820.86 |
1133.6 |
166.08 |
146.03 |
822.38 |
1136.9 |
166.71 |
146.66 |
823.92 |
1140.2 |
167.36 |
147.30 |
Таблица 2. Коэффициенты теплоотдачи (размерность Вт/(м2*К)) для первого реактора. Давление греющего дымового газа 28 ат
Приведенные данные характеризуют соотношение интенсивности обоих видов теплопередачи в первом реакторе каталитического парциального окисления 1 с преимущественно радиационным подводом тепла в зону реакции при давлениях дымового газа 1 и 28 атмосфер. В таблице 3 приведены аналогичные данные для второго реактора каталитического парциального окисления 2 с преимущественно конвективным подводом тепла в зону реакции при давлении дымового газа 28 атмосфер.
Температура конвертированного газа, оС |
Температура греющего газа, оС |
αр + αк |
αр |
477.77 |
551.09 |
277.78 |
17.363 |
479.07 |
551.84 |
277.86 |
17.413 |
480.35 |
552.58 |
277.94 |
17.462 |
481.60 |
553.33 |
278.02 |
17.511 |
482.83 |
554.06 |
278.10 |
17.560 |
484.04 |
554.80 |
278.18 |
17.608 |
485.23 |
555.52 |
278.26 |
17.655 |
486.40 |
556.25 |
278.34 |
17.703 |
487.55 |
556.97 |
278.42 |
17.750 |
488.69 |
557.69 |
278.49 |
17.796 |
489.80 |
558.40 |
278.57 |
17.842 |
490.90 |
559.11 |
278.65 |
17.888 |
491.98 |
559.81 |
278.72 |
17.934 |
493.04 |
560.51 |
278.80 |
17.979 |
494.09 |
561.21 |
278.87 |
18.024 |
495.12 |
561.91 |
278.95 |
18.068 |
496.13 |
562.60 |
279.02 |
18.113 |
Таблица 3. Коэффициенты теплоотдачи (размерность Вт/(К м2)) для второго реактора. Давление греющего дымового газа 28 ат
Рисунок. Унифицированная технологическая схема генерации синтез-газа
Процесс реализуется следующим образом.
Природный газ смешивают с водородной фракцией и направляют для предварительного теплообмена в теплообменники 3 и 4. В теплообменнике 3 газовая смесь нагревается отходящим дымовым газом, расширенном в газовой турбине (экспандере) 5, а в 4 - частью конвертированного газа и направляют в аппараты сероочистки 6, в которых освобождают от сернистых соединений.
Очищенный газ поступает в коллектор – делитель, в котором от него отделяют технологическую фракцию «1» (используемую для процесса) и топливную фракцию «2» (сжигаемую в горелках). Топливная фракция по описываемую техническому решению очищается от сернистых и других химических соединений, являющихся катализаторными ядами. Это позволяет получать дымовой газ от сжигания этой фракции также свободным от указанных соединений.
В результате дымовой газ может быть использован в технологическом процессе, в том числе как питание для каталитических реакторов. К топливной фракции с целью уменьшения расхода основного топлива допускается добавка любых видов дополнительных топлив, подогреваемых теплообменником 8. Поток топлива может разделяться на несколько частей. Основная часть сжигается в главных горелках первого реактора 1, остальные части используют для управления процессом и при пусковых операциях, сжигая их во вспомогательных горелках турбины и второго реактора 2. В очищенную технологическую фракцию в смесителе 7 добавляют пар. Парогазовую смесь после подогрева в теплообменниках 9 и 10 в зависимости от интенсивности теплообмена в реакторах 1 и 2 делят на две части в пропорции, обеспечивающей минимальную концентрацию метана в конвертированном газе, поступающем в теплообменник 11. Первая часть поступает в реактор 1, а вторая в реактор 2. В обоих реакторах протекают эндотермические реакции риформинга с водяным паром и/или с диоксидом углерода. Источником тепла, обеспечивающим протекание эндотермических реакций, служит дымовой газ, получаемый в основных Г1 и вспомогательных горелках Г2 и Г3 путем сжигания топливной части природного газа с воздухом. Дымовой газ из основных горелок поступает в межтрубное пространство первого реактора 1, отдает часть тепла, а затем поступает в межтрубное пространство второго реактора 2. Второй реактор снабжен вспомогательно - пусковой горелкой, которая при необходимости используется для управления процессом в нём.
Первый и второй реакторы отличаются тем, что в первом из них теплопередача в основном осуществляется радиационным теплообменом (80 – 97%), а во втором определяющим фактором является конвективный теплообмен. На долю радиационного теплообмена во втором реакторе приходится 5 – 20% от переданного тепла. Второй реактор может содержать одну или более ступеней с целью увеличения степени конверсии и использования тепла дымового газа.
В результате в реакторах 1 и 2 образуется смесь газов при температуре 8730С и давлении 26.9 ата, следующего состава, % об:
CO2-5.48, CO-8.37, Н2-47.49, N2-0.331, H2O-35.68, СН4-2.64, Ar-0.003.
Для снижения температуры синтез-газа, при необходимости, его поток пропускают через теплообменник 11.
Описанный способ позволяет более чем в два раза увеличить использование тепла дымового газа (теплоносителя) для протекания эндотермических реакций.
Дымовой газ получают следующим образом. Сжатый в воздушном компрессоре 12 воздух разделяют на несколько частей. Первая часть – это технологический воздух. Этот воздух используется, например, если описываемый унифицированный способ генерации синтез-газа является частью технологической схемы производства аммиака. Две другие части применяют для сжигания топлива в главных горелках Г1 первого реактора 1 и во вспомогательных горелках турбины Г2 и горелках Г3 второго реактора 2. Таким образом, по образующемуся дымовому газу все использующие его объекты соединены последовательно и параллельно. Дымовой газ, получаемый на всех ступенях сжигания топлива после использования тепла в реакторах с температурой ~540 оС, поступает в коллектор турбины, из которого часть дымового газа, при необходимости, можно отбирать для технологического использования.
Работа от расширения дымового газа в экспандере 5 используется для привода компрессора воздуха или для иных целей. Остаточное тепло расширенного в экспандере дымового газа используют для предварительного подогрева технологического газа в теплообменнике 8. Выходящий из теплообменника 8 дымовой газ состава, %, об:
CO2-8.19%, N2- 71.58%, O2- 2.71%, H2O-16.66%, Ar- 0.854%, с температурой ~ 150 оС, выбрасывается в атмосферу.
Отсутствие в дымовом газе оксидов серы и его относительно низкая температура значительно уменьшают экологически опасное воздействие на окружающую среду.
Применительно к производству аммиака может быть рекомендована вышерассмотренная схема получения синтез-газа, дополненная реактором автотермического риформинга (вторичного риформинга). В него подают конвертированный газ из реакторов 1 и 2 унифицированной схемы, а также технологический воздух от компрессора 12. Дополнительно в реактор направляют часть дымового газа, отбираемого из коллектора экспандера 5.
Тепло конвертированного газа, выходящего из реактора вторичного риформинга, используют в котлах-утилизаторах для получения пара, а оставшееся тепло – для подогрева технологических потоков. Затем конвертированный газ подвергают обработке по стандартной схеме, включающей средне- и низкотемпературную конверсию СО, метилдиэтаноламинную очистку, метанирование, систему использования тепла и охлаждения вплоть до получения азото-водородной смеси стехиометрического состава для синтеза аммиака. Кроме того, технологическая схема, построенная по данному способу, позволяет сбалансировать производительность по аммиаку и диоксиду углерода для создания комплекса производств аммиак - карбамид путем извлечения диоксида углерода из части дымового газа под давлением технологического процесса [7].
Для этого в реактор вторичного риформинга подают смесь газов из реакторов 1 и 2 как описано в вышерассмотренном примере, а также смесь воздуха и дымового газа в соотношении 0.773/1. В результате получают синтез-газ со стехиометрическим соотношением для синтеза аммиака состава, % о :
H2-74.00, N2-24.64, Ar-0.353, СН4-0.673.
Реализация способа получения синтез - газа по данному методу дает возможность создать производство аммиака со следующими показателями:
1. Энергопотребление.
Природный газ: нм3/час: топливо (23%), на технологию 77%, итого 798 нм3 (856,46 ст. м3, 760 мм рт. ст., 20 оС) на тонну аммиака.
При низшей теплотворной способности (по метану) 7969,29 ккал/ст.м3 энергопотребление по природному газу составит 6,825 Гкал/т NH3.
Лучшая мировая технология дает энергопотребление по природному газу 881,12 ÷918 нм3 или 7,1÷ 7,4 Гкал на тонну аммиака.
2. Экологическая толерантность.
Выбросы дымового газа в атмосферу 2420 нм3 на тонну NH3. В лучшей из известных технологий с температурой подогрева воздуха горения до 440 - 600 оС – 2660 нм3 на тонну NH3, в наиболее распространенной стандартной схеме - 4470 нм3 на тонну NH3 или в 1.847 раза больше.
Технологическая схема получения синтез-газа для производства водорода отличается от описанной тем, что в автотермический реактор вторичного риформинга вместо смеси воздуха и дымового газа подают только воздух или окислитель (например, чистый кислород). Кроме того, конвертированный газ с оптимальными параметрами аммиачного агрегата может быть непосредственно использован для получения водорода путем выделения его методами короткоцикловой адсорбции
Реализация предложенного способа получения синтез - газа даёт возможность создать производство водорода со следующими показателями:
- 1.Энергопотребление. Природный газ (в пересчете на метан) 388,3 нм3 на 1000 нм3 Н2. Энергетический эквивалент - 3,153 Гкал/1000 нм3 Н2. Известные мировые технологии - 484,3÷496,4 нм3 на 1000 нм3 Н2, или 1,247 раза больше.
- 2.Экологическая толерантность. Выбросы дымового газа в атмосферу - 1254 нм3 на 1000 нм3 природного газа или на ~ на 25% меньше, чем в известных технологиях.
Для получения синтез - газа, пригодного для производства спиртов и альдегидов, а также синтетических жидких углеводородов в автотермический реактор подают газ из реакторов 1 и 2 как описано в унифицированной схеме производства аммиака, а также смесь диоксида углерода и кислорода. При этом стадию конверсии оксида углерода с водяным паром используют для поддержания требуемого соотношения Н2/СО.
Список литературы:
1. Гартман В.Л., Обысов А.В., Дульнев А.В., Афанасьев С.В. Новая базовая форма катализаторов для реакторов конверсии углеводородов. // Катализ в промышленности (Сatalysis in Industry). 2012. № 3. С.57–61.
2. Афанасьев С.В., Махлай С.В., Обысов А.В., Дульнев А.В., Сергеев С.П., Рощенко О.С. Патент РФ 2535826 (Опуб. 20.12.14 г.). Способ получения синтез-газа паровой конверсией углеводородов.
3. Сергеев С.П., Майдуров Н.П., Афанасьев С.В., Рощенко О.С. Теплообмен и гидравлика для течения газа в подъемной трубе трубчатой печи первичного риформинга. // Химическая промышленность сегодня. 2014. №4. С.35–41.
4. Обысов А.В., Круглова М.А., Дульнев А.В., Афанасьев С.В. Разработка высокоэффективного катализатора для процессов очистки технологических газов / Тезисы докладов II Российского конгресса по катализу «Роскатализ». 2-5 октября 2014 г. Самара. Т.2. С. 150.
5. Афанасьев С.В. Рощенко О.С., Дульнев А.В., Обысов А.В. Влияние типа катализатора на надежность работы печей риформинга агрегатов аммиака.// Вектор науки Тольяттинского государственного университета. 2011. № 4(18). С.25–28.
6. Обысов А.В., Соколов С.М., Дульнев А.В., Махлай В.М., Афанасьев С.В., Довганюк В.Ф. Патент РФ 2357919 (Опуб. 10.06.2009). Способ получения синтез-газа, обогащенного водородом и монооксидом углерода, путем каталитического риформинга углеводородсодержащего сырья.
7. Афанасьев С.В., Садовников А.А., Гартман В.Г., Обысов А.В., Дульнев А.В. Промышленный катализ в газохимии. Монография. Под ред. д.т.н. С.В. Афанасьева /Самара. Изд-во Сам. научн. центра РАН. 2018 – 160 с.
8. Афанасьев С.В., Сергеев С.П. Каталитический способ получения синтез-газа паровой конверсией углеводородов/ Материалы межд. научно-прак. конф. «Нефтегазопереработка-2017». Уфа, 23 мая 2017 г. ГУП Институт нефтепереработки РБ. 2017. С. 21–22.
9. Афанасьев С.В., Рощенко О.С., Сергеев С.П. Технология получения синтез-газа паровой конверсией углеводородов// Химическая техника. Межотраслевой журнал для главных специалистов предприятий. 2016. № 6. С. 30–32.
10. Сергеев С.П., Афанасьев С.В. Патент РФ 2664526 (Опубл. 20.08.18 г). Энергосберегающий унифицированный способ генерации синтез-газа из углеводородов.