USD 92.5058

-0.79

EUR 98.9118

-0.65

Brent 88.19

+0.15

Природный газ 1.974

0

16 мин
1181

Геоэкология метанола, используемого в газовой промышленности

Рассмотрена геоэкология метанола, используемого в газовой промышленности в качестве ингибитора гидратообразования. Приведены примеры и описаны риски загрязнения окружающей среды метанолом, а также его токсического действия на человека. Представлены гигиенические нормативы метанола для контроля загрязнения им окружающей среды. Охарактеризованы различные способы утилизации и очистки сточных вод и почв, содержащих метанол (сжигание, захоронение, ректификация, ультрафиолетовое облучение, каталитическое и микробиологическое воздействие), как решение проблемы риска загрязнения окружающей среды данным веществом.

Геоэкология метанола, используемого в газовой промышленности

Метанол (CH3OH) используется в газовой промышленности как ингибитор гидратообразования, то есть для борьбы с таким нежелательным явлением, как образование при определенных термобарических условиях из воды и низкомолекулярных газов так называемых газовых гидратов в виде твердых кристаллических соединений [1, 2]. Механизм действия метанола, относящегося к классу термодинамических ингибиторов гидратообразования, заключается в снижении активности воды в водном растворе, вследствие чего изменяются равновесные условия образования гидратов. Так, закачка метанола в призабойную зону скважины газогидратных месторождений вызывает не только разложение газовых гидратов на забое скважины, но и улучшает фильтрационные характеристики призабойной зоны, то есть участка пласта, примыкающего к стволу скважины. Кроме того, высокая адсорбционная способность метанола используется для удаления воды после гидростатических испытаний газопроводов, а также в низкотемпературных процессах очистки природного газа от углекислого газа (CO2), сероводорода (H2S) и других серосодержащих органических соединений.

Повсеместное использование метанола, и особенно на газодобывающих предприятиях Крайнего Севера, обусловлено рядом причин, в числе которых относительно низкая его стоимость по сравнению с другими ингибиторами гидратообразования (гликолями, поверхностно-активными веществами, водорастворимыми полимерными композициями), наивысшая среди известных ингибиторов антигидратная активность, сохраняющаяся даже при низких температурах, очень низкая температура замерзания концентрированных растворов метанола и исключительно малая их вязкость даже при температуре ниже -50С [3].

Цель данной работы состояла в анализе, систематизации и обобщении информации, касающейся примеров и риска загрязнения окружающей среды метанолом, используемым в газовой промышленности, токсического его действия на человека, контроля загрязнения окружающей среды, способов утилизации и очистки сточных вод и почв, содержащих данное вещество.

Примеры загрязнения окружающей среды метанолом

Загрязнение окружающей среды метанолом происходит в результате его аварийных выбросов или разливов при производстве, транспортировке и применении данного вещества. При этом количество аварийных выбросов или разливов метанола или промышленных сточных вод, содержащих это вещество нельзя планировать, а избежать их на 100% практически невозможно. Так, недавно в Свердловской области на железнодорожной станции произошла утечка значительного количества метанола (850 л) из цистерны на пути [4]. Серия инцидентов, связанных с высоким загрязнением атмосферного воздуха метанолом, то есть до 10, 15 и 22 предельно допустимой концентрации (ПДК), была зарегистрирована в Тульской области [5-7]. Высокое и экстремально высокое загрязнение метанолом речной воды, соответственно до 32 и 58 ПДК, было установлено в Вологодской области [5, 8]. В одном из городов Кемеровской области в воде скважин на территории химических предприятий был обнаружен метанол в концентрации, превышающей его ПДК, а в Архангельской области метанол был отнесен к числу приоритетных загрязнителей источников питьевой воды, требующих постоянного контроля [9, 10].

Риск загрязнения окружающей среды метанолом

Самый большой риск загрязнения окружающей среды метанолом представляет его транспортировка на газодобывающие предприятия. Известно, что транспортная схема обеспечения газодобывающих предприятий метанолом, существующая в настоящее время, например, в Надым-Пур-Тазовском нефтегазоносном регионе (Ямало-Ненецкий автономный округ, 6715' с.ш., 7440' в.д.) включает несколько этапов, а именно [3]: залив метанола в железнодорожные цистерны на заводе-изготовителе и их транспортировка на головную базу, перелив метанола из железнодорожных цистерн в стационарные емкости для хранения, подготовка метанола к использованию путем добавления красителя или одоранта, перелив метанола из стационарных емкостей в автомобильные цистерны и их транспортировка до базы метанола на газодобывающем предприятии, где осуществляется перелив метанола из автомобильных цистерн в стационарные емкости, затем перелив из стационарных емкостей в другие автомобильные цистерны и транспортировка метанола на конкретные объекты потребления.

Примером чрезвычайно высокого риска для водной среды является транспортировка метанола в короткий летний период навигации на грузовых судах по реке Обь и Тазовской губе (морскому заливу) на Юрхаровское газоконденсатное месторождение Надым-Пур-Тазовского нефтегазоносного региона [11, 12]. Как известно, река Обь и Тазовская губа относятся к водоемам высшей рыбохозяйственной категории, как местам нагула ценных пород осетровых и сиговых рыб.

Альтернативой к экологически небезопасной транспортировке метанола на весьма большие расстояния, как по суше, так и по воде, может быть создание малотоннажного производства метанола в форме мини-заводов в непосредственной близости к месту его использования, то есть в районе добычи природного газа, а также вторичное использование отработанного метанола путем его регенерации [2, 11, 12]. Подобного рода мини-заводы с упрощенной технологической схемой монтируются в быстро воспроизводимом модульном сооружении и позволяют полностью отказаться от централизованного снабжения газодобывающих предприятий метанолом [13]. При этом в качестве сырья для производства метанола может быть использован собственный природный газ, в котором, как известно, содержание метана (CH4) составляет от 70 до 98%. Первоначально паровой конверсией метана получают так называемый синтез-газ (смесь монооксида углерода и водорода), а затем на медь-цинковом оксидном катализаторе из него синтезируют искомое вещество – метанол:

CH4 + H2O → CO + 3H2;
CO + 2H2 → CH3OH.

Токсическое действие метанола на человека

Метанол является сильным, преимущественно нервным и сосудистым ядом с резко выраженным кумулятивным эффектом, то есть усиленным токсическим действием в результате его накопления в организме при кратных поступлениях [14]. Наибольшее количество метанола накапливается в печени и почках [15]. Установлено, что часть поступившего в организм метанола через несколько суток выделяется слизистой оболочкой в просвет желудка и затем снова всасывается. Метанол при пероральном попадании в организм человека вызывает циркуляторный коллапс, то есть острую сосудистую недостаточность, сопровождающуюся резким падением кровяного давления. Особую токсичность метанола связывают с образованием из него в организме формальдегида (НСОН) и муравьиной кислоты (НСООН):

CH3OH → HCOH → HCOOH.

За счет образования именно этих веществ, а также медленного распада метанола обусловлена тяжесть интоксикации. При любом пути поступления метанола типичны поражения зрительного нерва и сетчатки глаза, отмечаемые как при острых, так и при хронических интоксикациях. Пары метанола сильно раздражают слизистые оболочки глаз и дыхательных путей. Поступление метанола в желудок опасно в количестве даже 5-10 мл, а смертельной дозой является 30 мл. Симптомы отравления (тошнота, рвота) могут наступать как вскоре после попадания вещества, так и через несколько часов, на следующий день или еще позднее. В тяжелых случаях наблюдаются резкая синюшность, глубокое и затрудненное дыхание, судороги, слабый учащенный пульс, отсутствие реакции зрачков, и смерть наступает от остановки дыхания. Пострадавшие, находящиеся в сознании, жалуются на головную боль, сильнейшие боли во всем теле и в желудке, мелькание перед глазами и неясность видения. Неисчезающее расширение зрачков указывает на возможность рецидива или стойкого расстройства зрения. Функциональная неполноценность печени не исчезает с наступлением клинического выздоровления, которое протекает очень медленно.

Ранние симптомы хронической интоксикации метанолом проявляются в виде концентрического сужения границ цветного зрения, нарастающего со временем и атрофии зрительного нерва, то есть уменьшения его размеров, сопровождающегося нарушением или прекращением функции и отеком. У лиц с хронической интоксикацией метанола в производственных условиях возникает изменение белковообразовательной функции печени. Имеют место быстрая утомляемость, головная боль во второй половине дня, раздражительность, плаксивость и боль в правом подреберье. При малых концентрациях метанола отравление развивается постепенно и характеризуется раздражением слизистых оболочек, частыми заболеваниями дыхательных путей, головными болями, звоном в ушах, невритами и расстройствами зрения. Отравление организма при попадании на кожу метанола обычно происходит при одновременном вдыхании его паров. Поступление метанола в организм через кожу и дыхательные пути связано с особыми условиями, как обливом веществом поверхности тела (без проведения немедленной дегазации) и длительным пребыванием в атмосфере, содержащей метанол [15]. Для определения раннего негативного действия метанола представляется важным и необходимым определение данного вещества в биологических жидкостях организма (крови и моче), например, газохроматографическим методом.

Так как преимущественная интоксикация метанолом происходит при его приеме внутрь, то для исключения возможности ошибочного употребления метанола в производственных условиях в него добавляют одоранты – этилмеркаптан (C2H5SH, 1:1000), керосин (1:100) или темный краситель (2,5:1000) [3].

Контроль загрязнения окружающей среды метанолом

Контроль загрязнения окружающей среды метанолом осуществляется по гигиеническим нормативам в форме его ПДК в воздухе и воде, а на человеке в производственных условиях в форме предельно допустимого уровня (ПДУ) метанола на коже его рук (таблица 1) [14]. Здесь под ПДК вещества в воздухе рабочей зоны подразумевается концентрация, которая в течение всего рабочего стажа не должна привести к заболеванию или отклонению в состоянии здоровья; ПДК вещества максимальная разовая – концентрация в воздухе населенных мест, которая при вдыхании в течение 30 мин не должна вызывать рефлекторных реакций в организме человека; ПДК вещества среднесуточная – концентрация в воздухе населенных мест, которая не должна оказывать на человека негативного воздействия при неопределенно долгом вдыхании; ПДК вещества в воде водоема – концентрация, которая не должна оказывать негативного влияния на организм человека и не должна ухудшать гигиенические условия водопользования; ПДУ вещества на коже рук – концентрация, которая в течение всего рабочего стажа не должна привести к заболеванию или отклонению в состоянии здоровья.

Таблица 1. Гигиенические нормативы метанола для различных сред и человека

Гигиенический норматив

Среда и человек

Значение

Предельно допустимая концентрация

В воздухе рабочей зоны

5 мг/м3

Максимальная разовая в воздухе населенных мест

1 мг/м3

Среднесуточная в воздухе населенных мест

0,5 мг/м3

В воде водных объектов

3 мг/л

Предельно допустимый уровень

На коже рук

0,02 мг/см2

Однако считается, что определение метанола в биологических средах человека (крови и моче) более актуально, чем определение данного вещества в атмосферном воздухе, поскольку разовая непродолжительная проба в зоне дыхания может неадекватно отражать общее воздействие метанола на организм [15].

Одним из значимых путей поступления метанола в организм человека, особенно в производственных условиях, является ингаляционный. Поэтому контролю загрязнение воздуха метанолом придается особое значение. Так, примером осуществления действенного контроля загрязнения воздуха метанолом являются исследования [16], выполненные на Астраханском газоперерабатывающем заводе. Газохроматографическим методом было установлено, что максимальное содержание метанола в производственных помещениях было ниже или незначительно превышало его ПДК для воздуха рабочей зоны, равную 5 мг/м3. Другим примером контроля загрязнения воздуха метанолом являются результаты мониторинга за состоянием воздуха рабочей зоны ряда химических производств по получению метанола, расположенных в Восточной Сибири [17]. Газохроматографическим методом также было установлено, что за наблюдаемый период времени не отмечалось превышения гигиенических нормативов метанола даже при максимальном его содержании.

Способы утилизации и очистки сточных вод и почв, содержащих метанол

Как известно сточные воды, образуемые на предприятиях газовой промышленности, наряду с метанолом содержат ряд других специфических компонентов (углеводороды, фенолы, гликоли, сероводород и другие вещества) [18]. При этом способ утилизации подобного рода сточных вод, например, сжиганием на так называемых газофакельных установках не является экологически безопасным, так как опасные продукты сгорания компонентов сточных вод поступают в атмосферный воздух, затем оседают на почву и открытые водные объекты.

К другому способу утилизации сточных вод, широко практикуемому в газовой промышленности, относится их подземное захоронение. Оно осуществляется путем закачки сточных вод в глубокие, надежно изолированные водоносные горизонты, не содержащие пресных, бальнеологических, минеральных и термальных вод. Подземное захоронение сточных вод в область депрессионной воронки в водонапорной системе разрабатываемого месторождения природного газа может быть осуществлено при невозможности очистки сточных вод от метанола и других компонентов до требуемых ПДК. Так, например, утилизация не поддающихся очистке сточных вод Астраханского газоконденсатного комплекса, производится путем их закачивания через скважины в пласт триасово-нижнемеловых отложений на глубину около 2000 м [19].

Ниже описываются способы, ориентированные на очистку сточных вод с преобладающим содержанием метанола в их составе, так называемой метанолсодержащей воды. Так, в работе [20] представлена технологическая схема извлечения метанола из сточных вод предприятия химической промышленности на основе процесса ректификации, путем испарения жидкости и раздельной конденсации паров различных компонентов. При этом использовался метод периодической ректификации, который в отличие от непрерывного процесса позволяет разделить смесь и извлечь метанол в одной ректификационной колонне вместо двух.

Известен способ очистки метанолсодержащей воды путем ее ультрафиолетового облучения эксилампами (газоразрядными лампами) в присутствии азотной кислоты (HNO3) как сильного окислителя [21]. При этом под воздействием ультрафиолетового облучения происходит фотолиз воды и азотной кислоты с образованием высокореактивных радикалов – OH, H, NO2 и NO, которые в дальнейшем вступают в реакции с метанолом с образованием конечных продуктов CO2, H2O и NH3. В условиях in vitro эксперимента было установлено, что в метанолсодержащей воде с добавлением азотной кислоты (при соотношении CH3OH:HNO3, 10:1) под действием ультрафиолетового облучения с длиной волны λ=172 нм (Xe2 – эксилампа) концентрация метанола в воде за 16 мин уменьшалась с 35,0 до 2,6 мг/л, то есть в 13,5 раза, а при использовании аналогичного облучения с длиной волны λ=222 нм (KrCl – эксилампа) уменьшалась с 338,0 до 14,6 мг/л, то есть в 23 раза.

В работе [22] предложена технологическая схема извлечения метанола из производственных сточных вод газоконденсатных месторождений, заключающаяся в регенерации данного вещества ректификацией с последующим глубоким каталитическим окислением его остаточных количеств в кубовом остатке (неиспарившейся жидкости). При этом 100% окисление метанола в кубовом остатке в концентрации до 1,5% достигается при использовании медно-хромо-магниевого и хромо-магниевого катализатора на носителе из оксида алюминия (Al2O3). Продолжительность контакта метанолсодержащей воды с катализатором не менее 0,9 секунд при температуре не ниже 450С. Между тем исследования [23] показали также возможность 100% очистки сточных вод от метанола на медно-хромо-цинковом катализаторе при 250С с начальным содержанием вещества до 5%.

В другом способе очистки не только метанолсодержащей воды, но и почвы от метанола используются микроорганизмы. Так, в работах [24, 25] даются практические рекомендации по очистке указанных сред с помощью биопрепаратов в виде высушенных активных биомасс метилотрофных бактерий (Acinetobacter calcoaceticus и Methylomonas methanica), выделенных из озерной воды и почвы. Очистка загрязненных сред от метанола происходит путем микробиологической трансформации (окисления) данного вещества через формальдегид и муравьиную кислоту до диоксида углерода и воды:

CH3OH → HCOH → HCOOH → CO2 + H2O.

При этом очистку метанолсодержащей воды можно выполнять непосредственно в специальных прудах-накопителях, оснащенных системой компрессоров для нагнетания воздуха в объем очищаемой воды, и одновременной ее обработки биопрепаратом. Так, в условиях ферментера было установлено, что при объемном содержании метанола в воде в количестве 1% очистка последней происходила за 22 часа, при 2% – за 36 часов.

Между тем для снижения риска попадания метанола с загрязненной почвы в поверхностные и подземные воды возникает необходимость ее оперативной очистки, которую также проводят с помощью вышеуказанных биопрепаратов [24]. Так, при поверхностном (0-5 см) и подповерхностном (5-30 см) загрязнении почвы метанолом ее обрабатывают специально приготовленной суспензией биопрепарата (в растворе минеральных удобрений). При этом до и после обработки биопрепаратом верхние слои почвенного профиля подвергают рыхлению. При глубинном загрязнении почвенного профиля метанолом (до 100 см), его слой полностью экскавируют и складируют в виде бурта на специально подготовленную площадку с водонепроницаемым основанием и системой перфорированных труб, проходящих через толщу бурта и обеспечивающих интенсивную аэрацию с помощью компрессоров. Бурт обрабатывают биопрепаратом, периодически подвергают рыхлению и после очистки экскавированный слой возвращают на место выемки. Для очистки нижних слоев почвенного профиля прокладывают скважины на всю глубину загрязнения вплоть до зеркала грунтовых вод, в которые через перфорированные трубы прокачивают суспензию биопрепарата и воздух.

Таким образом, при использовании метанола в газовой промышленности в качестве ингибитора гидратообразования, риски загрязнения окружающей среды могут проявляться в результате аварийных выбросов или разливов при производстве, транспортировке и применении данного вещества. Необходимость контроля загрязнения окружающей среды метанолом связана с его токсическим действием на человека и для осуществления которого используют гигиенические нормативы вещества в виде ПДК и ПДУ. Методы утилизации и очистки сточных вод и почвы, содержащей метанол, различны – это сжигание, захоронение, ректификация, ультрафиолетовое облучение, каталитическое и микробиологическое воздействие, выбор которых для практического применения, в первую очередь, будет определяться их экологической эффективностью.


Литература:

1. Российская газовая энциклопедия. М.: Большая Российская энциклопедия, 2004. 527 с.

2. Истомин В.А., Минигулов Р.М., Грицишин Д.Н., Квон В.Г. Технологии предупреждения гидратообразования в промысловых системах: проблемы и перспективы // Газохимия. 2009. № 6. С. 32-40.

3. Грунвальд А.В. Рост потребления метанола в газовой промышленности России и геоэкологические риски, возникающие при его использовании в качестве ингибитора гидратообразования // Нефтегазовое дело. 2007. 25 с.

4. Дмитревская Е.С., Красильникова Т.А., Маркова О.А. О загрязнении природной среды и радиационной обстановке на территории Российской Федерации в марте 2014 г. // Метеорология и гидрология. 2014. № 6. С. 103-110.

5. Дмитревская Е.С., Красильникова Т.А., Маркова О.А. О загрязнении природной среды и радиационной обстановке на территории Российской Федерации в июле 2016 г. // Метеорология и гидрология. 2016. № 10. С. 103-110.

6. Дмитревская Е.С., Красильникова Т.А., Маркова О.А. О загрязнении природной среды и радиационной обстановке на территории Российской Федерации в июне 2016 г. // Метеорология и гидрология. 2016. № 9. С. 97-104.

7. Дмитревская Е.С., Красильникова Т.А., Маркова О.А. О загрязнении природной среды и радиационной обстановке на территории Российской Федерации в мае 2016 г. // Метеорология и гидрология. 2016. № 8. С. 100-106.

8. Дмитревская Е.С., Красильникова Т.А., Маркова О.А. О загрязнении природной среды и радиационной обстановке на территории Российской Федерации в августе 2016 г. // Метеорология и гидрология. 2016. № 11. С. 96-103.

9. Эльпинер Л.И. Современные медико-экологические аспекты учения о подземных водах // Гигиена и санитария. 2015. № 6. C. 39-46.

10. Унгуряну Т.Н. Риск для здоровья населения при комплексном действии веществ, загрязняющих питьевую воду // Экология человека. 2011. № 3. С. 14-20.

11. Юнусов Р.Р., Шевкунов С.Н., Дедовец С.А., Ушаков С.Н., Лятс К.Г., Самойлов А.П. Малотоннажные установки по производству метанола в газодобывающих районах Крайнего Севера // Газохимия. 2008. № 1. С. 58-61.

12. Долинский С.Э. Установки по производству метанола за Полярным кругом. Интеграция и компактность – залог наивысшей эффективности // Газохимия. 2009. № 8. С. 14-18.

13. Ладыгин К.В., Цукерман М.Я., Стомпель С.И. Метанол в газодобыче: снижение экологических рисков // Экология производства. 2014. № 4. С. 47-49.

14. Андреев О.П., Башкин В.Н., Галиулин Р.В., Арабский А.К., Маклюк О.В. Решение проблемы геоэкологических рисков в газовой промышленности. Обзорная информация. М.: Газпром ВНИИГАЗ, 2011. 78 с.

15. Малютина Н.Н., Тараненко Л.А. Патофизиологические и клинические аспекты воздействия метанола и формальдегида на организм человека // Современные проблемы науки и образования. 2014. № 2. 11 с.

16. Бойко О.В., Ахминеева А.Х., Бойко В.И., Гудинская Н.И. Влияние Астраханского газоперерабатывающего завода на загрязнение воздуха производственных помещений и территории // Гигиена и санитария. 2016. № 2. С. 167-171.

17. Тараненко Н.А., Мещакова Н.М. Санитарно-гигиенические аспекты мониторинга за состоянием воздуха рабочей зоны химических производств по получению метанола и метиламинов // Международный журнал прикладных и фундаментальных исследований. 2015. № 8. С. 812-815.

18. Акопова Г.С., Ильченко В.П., Попадько Н.В. Производственные сточные воды газовой отрасли: источники образования, состав, очистка и утилизация // Газовая промышленность. 2003. № 6. С. 76-78.

19. Абуталиева И.Р., Исакова В.В. Освоение газоконденсатных месторождений как фактор изменения геосистем Астраханского Прикаспия // Вестник Астраханского государственного технического университета. 2010. № 2. С. 7-12.

20. Пухлий В.А., Журавлев А.А., Померанская А.К., Пухлий П.В. Очистка сточных вод от метанола и ацетона // Энергетические установки и технологии. 2016. Т. 2. № 2. С. 68-77.

21. Медведев Ю.В., Полыгалов Ю.И., Ерофеев В.И., Ерофеев М.В., Соснин Э.А., Тарасенко В.Ф., Истомин В.А. Облучение метанольных растворов Xe2- и KrCl-эксилампами барьерного разряда // Газовая промышленность. 2005. № 2. С. 63-65.

22. Бренчугина М.В., Буйновский А.С., Исмагилов З.Р., Кузнецов В.В. Разработка технологии очистки производственных вод газоконденсатных месторождений от метанола // Известия Томского политехнического университета. 2007. Т. 311. № 3. С. 64-68.

23. Шаркина В.И., Серегина Л.К., Щанкина В.Г., Фалькевич Г.С., Ростанин Н.Н. Очистка водометанольной фракции от метанола на промышленном катализаторе НТК-4 // Катализ в промышленности. 2012. № 1. С. 61-64.

24. Мурзаков Б.Г., Акопова Г.С., Маркина П.А. Очистка метанолсодержащих вод с помощью биологических препаратов // Газовая промышленность. 2005. № 12. С. 58-60.

25. Мурзаков Б.Г., Акопова Г.С., Маркина П.А. Выделение метилотрофных бактерий из микробиоценоза метанолсодержащих вод // Газовая промышленность. 2006. № 3. С. 83-85.



Статья «Геоэкология метанола, используемого в газовой промышленности» опубликована в журнале «Neftegaz.RU» (№2, Февраль 2017)

Авторы:
Читайте также