Территориально Вуктыльское НГКМ расположено в Вуктыльском районе Республики Коми. В Северной части месторождения находится районный центр г. Вуктыл (рис. 1).
РИС. 1. Обзорная карта
В пределах Вуктыльского НГКМ числится десять залежей углеводородов, пять из них в автохтонной и пять в аллохтонной частях разреза.
Наиболее крупным объектом разработки является нижне-пермско-каменноугольная газоконденсатная залежь (Р1-С), которая находится в аллохтонной части разреза. Вуктыльское месторождение введено в опытно-промышленную эксплуатацию в октябре 1968 года.
Вуктыльское газоконденсатное месторождение, Российская Федерация, Республика Коми (Тимано-Печорская нефтегазоносная провинция). Было открыто в 1964 году. Залежи находятся на глубине 2,2-3,5 км. Начальные запасы газа Вуктыльского газоконденсатного месторождения составляют 388,1 млрд м3. Содержание метана до 85%, конденсата 352 г/м3. Центр добычи – г. Вуктыл.
Так как разработка месторождения велась на режиме истощения, это привело к значительным потерям высококипящих углеводородов в виде ретроградно выпавшего в пласте конденсата более 100 млн т. Сложность разработки месторождения обусловлена также трещиноватым типом коллектора. Благодаря теоретическим и экспериментальным исследованиям, выполненным во ВНИИГАЗе, была обоснована технология извлечения выпавшего в пласте конденсата за счет закачки «сухого» неравновесного газа [1].
Вуктыльское НГКМ приурочено к верхнему надвинутому блоку одноименной структуры, представляющей собой фронтальную складку (рис. 2).
РИС. 2. Структурная карта (I – УППГ, II – УКПГ-1, III – УКПГ-2, IV – УКПГ-3, V – УКПГ-4, VI – УКПГ-5, VII – УКПГ-8)
В процессе разведки, освоения и ввода месторождения в разработку были выявлены такие особенности как:
- сложная конфигурация структуры;
- высокий этаж газоносности, более 1400 м;
- высокая разница температур по разрезу, более 250С;
- высокая разница давлений по разрезу, более 4 Мпа;
- высокое содержание конденсата (360 г/м3 на отметке средневзвешенной плоскости);
- приуроченности залежи к карбонатному массиву с различными типами коллекторов;
- сильно развитая трещиноватость.
Резкая фильтрационная неоднородность продуктивного массива, видимо, связана с широко развитыми зонами трещиноватости, особенно вдоль длинной оси складки. Массивно-пластовая газоконденсатная залежь приурочена к толще, сложенной преимущественно карбонатными породами. Коллекторы продуктивной толщи относятся к сложным. В общем массиве и по отдельным литолого-стратиграфическим пачкам по типу пустотного пространства выделяются коллекторы с гранулярной (поровые), смешанной (каверно-поровые) и порово-трещинной емкостью. По всей толще карбонатов нижней перми-карбона наблюдается широко развитая макро- и микротрещиноватость, определяющая фильтрационную анизотропию. В случае перевода месторождения в режим «хранилища-регулятора» изучение фильтрационной характеристики продуктивных отложений весьма актуально для понимания и изучения процессов фильтрации. Анизотропные свойства начали больше ощущаться при закачке сухого газа и при этом фиксировались дальние прорывы закачиваемого газа. Пути наилучшей фильтрации определяются главным образом трещиноватостью разреза [2].
Выявление трещиноватости продуктивного разреза в основном осуществлялось на основе геолого-промысловых методов. Так, по результатам гидрогазодинамических исследований на основе производных Бурде, наблюдается развитие линейных и билинейных потоков. По данным акустического каротажа, также выделяются кавернозно-трещиноватые участки, которые связаны с зонами тектонической раздробленности.
В настоящей работе для исследования механизма массоперетока в пористой среде было отобрано несколько скважин с проведенными гидродинамическими исследованиями на нестационарных режимах фильтрации. Исследования по скважинам проводились в различные промежутки времени. Результаты испытаний обрабатывались с использованием программного комплекса (ПК) Saphir KAPPA Workstation v5.10.03.
Кроме параметров, определяющих матричную среду, модель двойной пористости также описывается еще двумя переменными: ω – доля трещинно-кавернозной емкости характеризующая долю трещин в общей системе пласта, λ – фильтрационное сопротивление межпоровых перетоков, которое характеризует способность матричных блоков перетекать в систему трещин и определяется отношением проницаемостей «матрица-трещина» km/kf. (рис. 3 – 4).
РИС. 3. Изменение доли трещинно-кавернозной емкости
Рисунок 4 – Изменение коэффициента межпоровых перетоков
Согласно представленным результатам расчета установлено, что коэффициент перетока варьируется в широком диапазоне, а также свидетельствует о невысокой активности матрицы. Доля трещинно-кавернозной емкости с течением времени в большинстве случаев возрастает, что говорит о подключении более удаленных высокопроницаемых зон продуктивного пласта Вуктыльского месторождения. Во многом трещинная составляющая является дополнительной степенью свободы модели и требует более корректного определения. Корректность определения данных параметров трещиноватости и сопутствующих механизмов (размеры блоков, коэффициенты пористости и проницаемости, коэффициент массоперетока, относительные фазовые проницаемости, фазовые превращения) напрямую сказываются на прогнозных показателях.
Литература:
1. Тер-Саркисов Р.М., Захаров А.А., Гурленов Е.М., Левитский К.О., Широков А.Н., Контроль за разработкой газоконденсатного месторождения при нагнетании сухого газа в пласт. Геофизические и газогидродинамические метоы. – М.: ООО «Недра-Бизнес-центр», 2001. – 194 с.: ил.
2. Тер-Саркисов Р.М., Максимов В.М., Басниев К.С., Дмитриевский А.Н., Сургучев Л.М. Геологическое и гидротермодинамическое моделирование месторождений нефти и газа. – М. – Ижевск: Институт компьютерных исследований, 2012. – 452 с.