НПЗ и проект использования природного газа
MiRO Mineraloelraffinerie Oberrhein является одним из крупнейших нефтеперерабатывающих заводов Германии. НПЗ MiRO расположен в г. Карлсруэ и состоит из двух площадок, которые различными потоками связаны друг с другом (по сырью, продукции и инженерным сетям). В прошлом система топливного газа этого НПЗ в качестве дополнительного внешнего источника энергии использовала сжиженный нефтяной газ (СНГ), однако изменение цен сделало природный газ более привлекательной альтернативой с финансовой точки зрения. Поэтому руководство НПЗ MiRO решило использовать в качестве альтернативного источника энергии природный газ.
Структура новой интегрированной системы топливного газа, использующей в качестве источников энергии отходящий газ, газ от установок флюид-каталитического крекинга (ФКК), коксовый газ, сжиженный нефтяной газ и природный газ, показана на рис. 1.
В целях удовлетворения различных требований НПЗ специалисты компании MiRO разработали комплексную схему приоритетного управления. Кроме того, трубопроводы и средства управления новой системы природного газа необходимо было интегрировать с действующей системой топливного газа без остановки производственного оборудования. Таким образом, исследование динамической модели системы топливного газа проводилось со следующими основными целями.
· Обеспечение стабильной работы комплексной системы топливного газа при любых условиях эксплуатации и в переходных режимах
· Исключение возникновения колебаний и других динамических нарушений
· Тестирование конфигурации системы управления и предварительная настройка контроллеров перед установкой
· Достижение дополнительных целей управления (определение минимальных и максимальных значений расхода и т. д.)
· Отработка перехода с СНГ на природный газ в качестве основного топлива и обратно
· Безопасный ввод в эксплуатацию
· Сокращение сроков ввода в эксплуатацию
Динамическое моделирование системы топливного газа с помощью UniSim
Системы динамического моделирования процессов, такие как Honeywell UniSim Design[1], Invensys DYNSYM[2] и Aspentech Aspen HYSYS Dynamics[3], используют методы, основанные на базовых физических принципах, которые обеспечивают реалистичное воспроизведение переходных процессов, типичных для нефтегазовой и химической промышленности. Чтобы создать модель процесса, пользователь выбирает готовые компоненты и термодинамические пакеты для определения физических свойств и фазовых равновесий системы, после чего создает технологическую схему, добавляя и связывая друг с другом модели работы типовых блоков (трубопроводов, резервуаров, насосов, дистилляционных колонн и т. д.) и оборудования управления (клапаны, ПИД-регуляторы и т. д.). Полученную модель можно инициализировать, задав определенные начальные условия, и протестировать с помощью разных заранее подготовленных сценариев в рамках исследования динамической модели.
Исследование динамической модели является стандартным инструментом, используемым в перерабатывающих отраслях промышленности, для анализа и оптимизации переходных процессов. В качестве примера применения этой методики для анализа работоспособности оборудования или исследования безопасности можно привести оценку динамической нагрузки на факельную установку на НПЗ [1] или на континентальных газовых месторождениях [2], а также исследования компрессоров [3]. Для проведения ИДМ на НПЗ MiRO авторы выбрали пакет UniSim Design благодаря высокой скорости и стабильности моделирования, а также широким возможностям моделирования сложных систем управления.
Новую систему природного газа было необходимо интегрировать в систему топливного газа с использованием имеющихся трубопроводов и резервуаров, поскольку добавить новое оборудование без остановки производственного оборудования было невозможно (согласно требованию, указанному выше). Имеющееся оборудование не оптимизировано с точки зрения пропускной способности и перепадов давления, что может привести к нарушениям при протекании переходных процессов в интегрированной системе. На рис. 2 показана небольшая часть общей модели UniSim, в которой с большой точностью моделируются реальные трубопроводы НПЗ.Схема приоритетного управления системы топливного газа НПЗ MiRO гораздо сложнее — она должна быть способна:
· справляться с большим количеством управляемых параметров и контроллеров;
· учитывать сложную структуру технологического оборудования;
· соблюдать различные требования (ограничения по условиям безопасности, оптимальные рабочие точки и т. д.).
В качестве примера на рис. 4 показана часть схемы приоритетного управления.
Поскольку в процессе управления участвуют несколько ПИД-регуляторов, взаимодействие которых может привести к возникновению колебаний, основным предметом внимания в ходе анализа модели должна стать настройка параметров ПИД-регулирования.
В результате проведенных исследований был внесен ряд корректировок:
· пределы давления для выпуска факельного газа;
· параметры клапанов;
· параметры управления.
В целом, анализ модели подтвердил, что проектное решение системы топливного газа, включая систему природного газа и комплексную систему приоритетного управления, полностью выполняет свои функции и система работает без ошибок.
Ввод системы природного газа в эксплуатациюВ декабре 2013 года система природного газа была встроена в существующую систему топливного газа. В ходе работ по мере необходимости решались стандартные задачи настройки системы регулирования, такие как линеаризация нелинейных характеристик клапанов. Значения параметров управления, которые были получены в ходе ИДМ, стали хорошей основой для дальнейшей тонкой настройки параметров. Во многих случаях значения параметров управления динамической модели можно было использовать без каких-либо изменений.
В результате тщательной подготовки ввод системы в эксплуатацию был выполнен без существенных проблем. Стоит обратить внимание на короткий период времени, который потребовался для ввода в эксплуатацию и запуска расширенной системы топливного газа.
Сложной задачей оказалась подготовка операторов установок. Несмотря на то, что операторы прошли обучение на тренажере с упрощенной моделью, сложность новой системы приоритетного управления оказалась серьезной проблемой для многих из них.
Заключение
НПЗ MiRO расширил свою систему топливного газа с целью использования природного газа в качестве дополнительного альтернативного источника энергии. Новая система природного газа, которая включает в себя сложную схему приоритетного управления, была интегрирована в действующую систему топливного газа без остановки производственного оборудования. Для обеспечения безопасной и стабильной работы новой системы, а также исключения проблем при вводе в эксплуатацию, было проведено исследование динамической модели системы топливного газа с использованием пакета UniSim Design. Исследование модели позволило разработать полнофункциональную и безошибочно работающую систему. В результате ввод в эксплуатацию и запуск расширенной системы топливного газа прошли без каких-либо существенных проблем.
Литература
[1] Gruber, D., Leipnitz, D.-U., Sethuraman, P., Alos, M.A., Nogues, J.M., Brodkorb, M.: Are there alternatives to an expensive overhaul of a bottlenecked flare system?, (Есть ли альтернативы дорогим работам по капитальному ремонту факельной установки, ставшей узким местом?) PTQ, Q1, стр. 93–95, 2010.
[2] Panigrahy, P., Balmer, J., Alos, M.A., Brodkorb, M., Marshall, B.: Dynamics break the bottleneck (Анализ динамической модели позволяет справляться с узкими местами). Hydrocarbon Engineering, September, стр. 93 –96, 2011.
[3] Nugues, J.M., Brodkorb, M., Feliu, J.A.: How can dynamic process simulation be used for centrifugal compressor systems (Как использовать динамическое моделирование процессов для анализа центробежных компрессорных систем). Hydrocarbon Engineering, August, стр. 92–98, 2012.
[4] Luyben, Michael L.: Essentials of process control (Принципы управления технологическими процессами). Edited by William L. Luyben, McGraw-Hill (серия McGraw-Hill по технологиям для химической промышленности), New York, стр. 122-125, 1997.
[5] Smith, Carlos A.: Automated Continuous Process Control (Автоматизированное управление непрерывными процессами). John Wiley & Sons, Hoboken NJ, стр. 88-92, 2002.
[1] Пакет UniSim® Design является зарегистрированным товарным знаком корпорации Honeywell.
[2] DYNSYM является зарегистрированным товарным знаком корпорации Invensys.
[3] Aspen HYSYS Dynamics является зарегистрированным товарным знаком корпорации Aspen Technology.